2024 Ndfeb hydrogen decrepitation.jpeg - Fig. 1. Illustration of the Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling of anisotropic sintered NdFeB magnet. Passivated commercial N48M sintered magnets were used as starting material and hydrogen was applied to disintegrate the magnets inside a ball milling container. The hydride powder was both used directly …

 
Rare earth magnets based upon neodymium-iron-boron (NdFeB) are employed in many high tech applications, including h... Skip to main content. Sign In Create account . Journal Article OPEN ACCESS. THE USE OF THERMAL HYDROGEN DECREPITATION TO RECYCLE Nd-Fe-B MAGNETS FROM ELECTRONIC WASTE. Piotrowicz A; Pietrzyk S; …. Ndfeb hydrogen decrepitation.jpeg

High-temperature demagnetization can, however, cause melting of components, e.g., plastics, glue, etc. Hydrogen decrepitation (Table 8.3), a more efficient alternative, has been suggested for processing of HDDs [34], [35]. The NdFeB magnets absorb hydrogen, expanding in volume with about 5%, which causes breaking into …Hydrogen decrepitation (HD) of the sintered block was used to return the annealed material back into a powder [33]. During this step, the material reacts with hydrogen resulting in volume expansion of both the Nd-rich phase, at triple junctions and grain boundaries, and the Nd 2 Fe 14 B matrix phase [34]. This expansion leads to …Sep 17, 2021 · It is therefore expected that cracks are decreased by performing hydrogen decrepitation at higher temperature. To confirm this, the relationship between T dec (23°C–600°C) and the crack density D c was investigated. Here, D c was estimated by dividing the crack length in an SEM image by the cross-sectional area of the same image. The reaction speed in the typical hydrogenation run (Fig. 1b, 1d) is limited only by the rate of the gas diffusion into the sample.When the reaction proceeds in deficiency of hydrogen (Fig. 1b) only a part of the Nd transforms into neodymium hydride NdH y as it follows from the diffraction pattern displayed in Fig. 2d.That pattern includes …The oxidation kinetics in air of a commercial NdFeB magnet have been investigated over the temperature range 335–500°C. The oxide microstructure has been characterized by SEM, XRD and cross-sectional TEM. The results show that the external scale formed consists of an outer layer of Fe2O3 and an inner layer of Fe3O4 but that the principal degradation …Received 21st February 2020, Accepted 5th March 2020. meric portion. The PA-free magnet powder was found to retain >90% of its original magnetic properties. Two epoxy-bonded magnets produced with this recycled magnet powder showed magnetic properties. DOI: 10.1039/d0gc00647e. Hydrogen Decrepitation is a process step used in the production of Neodymium magnets to create extremely small grains in the material. Neodymium magnets must have very small grains averaging about 5 micrometers in order to have the best magnetic properties. But the grain sizes after casting are much larger than that, so they must be ground down ...The HD-process converts the magnets possible to recover the hard magnetic powder from a to a powder due to the expansion of the material on particular device (e.g. hard disk drive or electric motor) hydrogen absorption. Recycling of NdFeB magnets by by simply exposing the complete system to a hydrogen this means has been proposed by Rivoirard ...An essential information about history and applications of Hydrogen Decrepitation has been generally reported. Very important technical details about the HD route were summarized, as well as fabrication procedure of Nd16Fe76B8 permanent magnet. Some micro strucural of SEM images of hydride and sintered magnets were given to …The decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …International Journal of Hydrogen Energy. Volume 24, Issues 2–3, 1 March 1999, Pages 257-261. Application of hydrogen vibration milling in theprocessing of NdFeB and (Nd, Pr)FeB permanent magnets. Author links open overlay panel R.S Mottram 1, V Yartys 2, P.W Guegan 1, I.r Harris 1. Show more.Sep 17, 2021 · It is therefore expected that cracks are decreased by performing hydrogen decrepitation at higher temperature. To confirm this, the relationship between T dec (23°C–600°C) and the crack density D c was investigated. Here, D c was estimated by dividing the crack length in an SEM image by the cross-sectional area of the same image. The Hydrogen Decrepitation and the Hydrogen Disproportionation Desorption Recombination processes for the preparation and the recycling of the two industrially produced phases of SmCo alloys, SmCo5 and Sm2Co17, are reviewed. The effects of the chemical composition, the microstructure, the exposure time, the hydrogen …The processing and characterisation of recycled NdFeB based magnets. S. Adrwish. Materials Science. 2013. The scrap magnets were turned into a powder using the HD process. The powder was milled for specific times and sintered for 1-3hrs at 1090 °C. The magnet samples were measured using a permeameter to…. Expand. PDF.So exposure at LOW temperature to hydrogen leads the NdFeB pieces to react via intergranular fracturation (decrepitation), the mass of Nd2Fe14B grains forminfg a metal hydride with max ...In recent years, under the background of global low-carbon development, the production of NdFeB magnets has increased dramatically. With the end of magnet life, a large number of discarded products will be produced in the future. At the same time, 6–73% of industrial waste will be produced in the manufacturing process of magnets. The rare …The extracted NdFeB powder is of a purity whereby it can be re-processed into new magnetic materials or rare earth alloys. HyProMag Ltd will be targeting a wide range of end of life applications. Illustration of the HPMS process applied to the voice coil assembly of a hard disk drive. Pilot HPMS reactor capable of processing 5kg of NdFeB.Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at various temperatures in the range of 50-300°C, at two different pressures, 50 kPa and 200 kPa, followed by ...Hydrogen decrepitation (HD) of the sintered block was used to return the annealed material back into a powder [33]. During this step, the material reacts with hydrogen resulting in volume expansion of both the Nd-rich phase, at triple junctions and grain boundaries, and the Nd 2 Fe 14 B matrix phase [34]. This expansion leads to …The decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be …As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdH x. Composition inhomogeneity in the Nd 2 Fe 14 B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and …(DOI: 10.1016/S0925-8388(99)00443-0) The corrosion and degradation of Nd–Fe–B magnets by hydrogen from moisture in the environment has been termed the Negative Harris Effect. In order to provide more information on this phenomenon, different density Nd–Fe–B magnets have been subjected to vacuum desorption, XRD and …Abstract. This paper reports the desorption of hydrogen from NdFeB powder, and unmilled material, produced using hydrogen decrepitation as a pre-milling technique, investigated using a mass spectrometer to monitor the hydrogen partial pressure in the system as the sample was heated under vacuum from room temperature to …Unfortunately, the contained NdFeB magnets break up into a friable magnetized powder which then sticks to the ferrous scrap and the shredder itself. A production-scale plant in Germany planned to go onstream in 2024 and a pilot plant launched a few months ago in the UK, expected to graduate to production-scale in 2023, …Sep 20, 2016 · Hydrogen decrepitation of Pre-dismantled Computer HDDs. The University of Birmingham (UK) has developed a hydrogen-processing method to extract sintered NdFeB magnets from computer hard disk drives [13, 41]. During this process, either the voice coil assemblies from the hard disk drive or the cropped corner from the drive is exposed to hydrogen ... Feb 9, 2023 · Abstract The process of hydrogen decrepitation of the (Nd, Pr, Dy)(Fe, Co)2.6 alloy in wide temperature and pressure ranges has been studied. The choices of the chemical composition of the (Nd, Pr, Dy)(Fe, Co)2.6 alloy and the method of production of the initial alloy based on out-of-furnace calcium–thermal reduction are substantiated. The introduction of dysprosium into the alloy ... Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce ...Sep 14, 2000 · This way of powdering known as hydrogen decrepitation (HD) is a well-established stage of manufacturing technologies of sintered [2], [3] and bonded [4] Nd–Fe–B magnets. The interstitial hydrogen in the ferromagnetic Nd 2 Fe 14 B phase reduces significantly its anisotropy field H A. That is why desorption of hydrogen is necessary in order ... May 8, 2023 · An effective and complete processing route for the recycling of sintered Nd-Fe-B scrap magnets was proposed. Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at ... These magnets were identical in every way apart from the orientation of the Nd 2 Fe 14 B grains. Each magnet was exposed to hydrogen and the decrepitation behaviour observed. The anisotropic samples were found to decrepitate exclusively from the ends of the rods whereas the isotropic magnets were attacked by the hydrogen at all …Hydrogen decrepitation (HD)/hydrogenation disproportionation desorption recombination (HDDR) is a process used in manufacturing REPM and carried out as pretreatment before green body sintering. During hydrogenation, the Nd-rich grain boundary phase in NdFeB magnets initially absorbs hydrogen forming Nd hydride: [ 49 ].It should be noted that hydrogen already plays a vital role in the production of sintered NdFeB-type magnets [1].The bulk alloy absorbs around 0.4 wt.% of hydrogen during the initial decrepitation stage and this hydrogen is desorbed during the subsequent vacuum sintering.Every tonne of alloy produces around 40 cubic meters of hydrogen …Jan 1, 2006 · In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense, sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce permanent magnets. H 2 can be used to extract NdFeB magnets from the automotive scrap, however, many challenges in the recycling are presented.. The importance of design choices, having negative impact on the recycling, are investigated in this work, so can be avoided. • Higher Dy additions slow down the kinetics of the hydrogen decrepitation …Hydrogen decrepitation (HD) is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB) magnets. During the HD process, the …During the hydrogenation process, a volume expansion takes place, which promotes the formation of transgranular and intergranular cracks, causing the breakup of the material [29].Fig. 1 shows the different types of fracture that can occur during the hydrogen decrepitation process. The hydrogenation of the grain boundary phase can lead to an …In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense, sintered NdFeB-type magnets have been subjected to the …The decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …Hydrogen Decrepitation (HD) is a suitable method for recycling sintered neodymium-iron-boron magnets obtained from electronic scrap into a coercive powder [2][3][4][5][6][7][8][9]. ... Anisotropic ...Hydrogen decrepitation (HD) is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB) magnets. During the HD process, the NdFeB breaks down into a matrix phase (Nd2Fe14BHx) and RE-rich grain boundary phase. The grain boundary phase in the HD powder is <2 μm in size. Recycled NdFeB material has …PDF (11 MB) Get e-Alerts SUBJECTS: Grain, Hydrogen, Hydrogenation, Magnetic properties, Organic reactions Abstract Regarding the restrictions recently imposed by China on the export of rare-earth elements (REEs), …We report investigations on the processing by Spark Plasma Sintering (SPS) of RE2Fe14B (RE = Nd, Pr…) powders obtained by hydrogen decrepitation of …Sep 7, 2022 · We report investigations on the processing by Spark Plasma Sintering (SPS) of RE2Fe14B (RE = Nd, Pr…) powders obtained by hydrogen decrepitation of decommissioned magnets and the magnetic properties of the consolidated magnets. First experiments have been carried out with a commercial powder to make clear the mechanisms occurring during the powder densification. The magnetic properties of ... This means that NdFeB magnets are prone to galvanic corrosion, in particular, intergranular corrosion attack. The corrosion mechanism as well as the hydrogen decrepitation behaviour of microcrystalline (i.e. sintered) magnets has been studied extensively [11], [12], [13], [14].Oct 30, 2018 · The Hydrogen Decrepitation and the Hydrogen Disproportionation Desorption Recombination processes for the preparation and the recycling of the two industrially produced phases of SmCo alloys, SmCo5 and Sm2Co17, are reviewed. The effects of the chemical composition, the microstructure, the exposure time, the hydrogen pressure, and the temperature on the hydrogen absorption are discussed. The ... Step #5 Hydrogen Decrepitation While the grains are very small from strip casting, the material from strip casting comes out of the caster in sheets that must be reduced to powder in order to make magnets. The next step after this is Hydrogen Decrepitation –a process that introduces hydrogen to purposely disintegrate the magnet material. Each magnet was exposed to hydrogen and the decrepitation behaviour observed. The anisotropic samples were found to decrepitate exclusively from the ends of the rods whereas the isotropic magnets were attacked by the hydrogen at all points on their surface. Bulk corrosion studies in steam gave comparable results, the oriented sample …Mar 1, 1985 · The hydrogen decrepitation (HD) process are studied in detail based on these results. The hydrogen absorption mechanism of Sm(CoFeCuZr) 7.6 alloy can be regarded as a hydrogen dissolution process without phase transformation. In addition, the existence of a large amount of fine grains in the SC has an adverse effect on the alignment, which can ... International Journal of Hydrogen Energy. Volume 24, Issues 2–3, 1 March 1999, Pages 257-261. Application of hydrogen vibration milling in theprocessing of NdFeB and (Nd, Pr)FeB permanent magnets. Author links open overlay panel R.S Mottram 1, V Yartys 2, P.W Guegan 1, I.r Harris 1. Show more.As noted above, the calculated Gibbs energy of reactions of individual REE with atomic hydrogen (Table 1) is strongly negative, thereby predictive of rapid chemical decrepitation of the two-phase Nd-magnet within the temperature range of interest. These reactions can be expected to take place immediately … See moreThe subject of this paper is method (4) together with other aspects of the use of hydrogen in the processing of NdFeB-type magnets. 2. The hydrogen decrepitation process The manufacture of rare earth-transition metal magnets by the HD route was first proposed in a 1978 patent by Harris et al. [7].Keywords: Finite difference method; Kinetics; Hydrogen decrepitation; NdFeB alloys; Diffusion 1. Introduction Sv (V ) expansion due to decrepitation results in a five orders of magnitude higher rate of hydrogen diffusion into The most popular recent application of hydrogen in the Nd–Fe–B alloy than into a theoretical bulk sample of that ...In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process.The U.S. Department of Energy's Office of Scientific and Technical InformationThe basic compound for most Neodymium magnets is Nd2Fe14B. In practice, the actual chemical reaction used can be more complicated. A commonly used reaction is: 57 Fe + 8 B + 10 Fe2O3 + 7.5 Nd2O3 ...H 2 can be used to extract NdFeB magnets from the automotive scrap, however, many challenges in the recycling are presented.. The importance of design choices, having negative impact on the recycling, are investigated in this work, so can be avoided. • Higher Dy additions slow down the kinetics of the hydrogen decrepitation …The MMG has been active in the field of rare earth alloys and processing of permanent magnets using hydrogen for over 40 years. Originated by Professor Emeritus Rex Harris, the hydrogen decrepitation method, which is used to reduce NdFeB alloys to a powder, is now ubiquitously employed in worldwide magnet processing. It should be noted that hydrogen already plays a vital role in the production of sintered NdFeB-type magnets [1].The bulk alloy absorbs around 0.4 wt.% of hydrogen during the initial decrepitation stage and this hydrogen is desorbed during the subsequent vacuum sintering.Every tonne of alloy produces around 40 cubic meters of hydrogen …NdFeB sintered magnet material has been developed. The magnets are produced by powder metallurgy route involving hydrogen decrepitation technique for making fine powder. After melting and casting ...1. Introduction. The hydrogen decrepitation (HD) process for cast NdFeB alloys [1] has also been shown to be a technically and economically effective method for breaking down scrap sintered NdFeB magnets into a powder [2] and hence, for instance, for the separation of NdFeB-based magnets from end-of-life hard disk drive assemblies [3], …An effective and complete processing route for the recycling of sintered Nd-Fe-B scrap magnets was proposed. Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at various temperatures in the range of 50–300 °C, at two different pressures, 50 kPa and 200 kPa, followed by vacuum dehydrogenation in …Jun 27, 2014 · The scrap sintered Nd–Fe–B magnets were recycled as the raw materials for bonded magnets using the hydrogen decrepitation (HD) process. The HD powders have the lowest oxygen and hydrogen content by hydrogenation at 150 °C with 1 bar H2 pressure and dehydrogenation at 600 °C. The powders with the largest particle size (>380 μm) bear the best magnetic properties (B r = 110.59 emu/g, H cj ... @article{osti_37277, title = {Hydrogen decrepitation of sintered NdFeB magnets}, author = {Stiller, C and Roth, S and Binner, A}, abstractNote = {The kinetics of the hydrogen absorption and desorption behavior of a NdFeB sintered magnet is studied. Hydrogenation at temperatures above 200 C is used to crumble the Nd-enriched phase. …Dec 20, 2020 · Extraction of NdFeB from rotors using hydrogen. Seven semi-embedded rotors and non-embedded rotors were processed separately in two experiments. All the magnets in individual slots were scored in concentric circles using an angle grinder to provide a fresh surface for the hydrogen, as shown in Fig. 3, 15–30 min before being loaded into the ... The hydrogen-absorbing NdFeB powder absorbs heat in the plasma and rapidly decomposes and dehydrogenates. At the same time, in the dehydrogenation process, the particles are cracked and broken to form fine NdFeB powder due to rapid heat absorption and release of a large amount of hydrogen, and the NdFeB powder is at a high …The hydrogen-absorbing NdFeB powder absorbs heat in the plasma and rapidly decomposes and dehydrogenates. At the same time, in the dehydrogenation process, the particles are cracked and broken to form fine NdFeB powder due to rapid heat absorption and release of a large amount of hydrogen, and the NdFeB powder is at a high …In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. Abstract: Hydrogen decrepitation (HD) is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB) magnets. During the …Keywords: Finite difference method; Kinetics; Hydrogen decrepitation; NdFeB alloys; Diffusion 1. Introduction Sv (V ) expansion due to decrepitation results in a five orders of magnitude higher rate of hydrogen diffusion into The most popular recent application of hydrogen in the Nd–Fe–B alloy than into a theoretical bulk sample of that ...Aug 4, 2022 · Here, we describe a room temperature, electrolytic decrepitation process applied to sintered Nd 2 Fe 14 B magnet fragments taken from end-of-life computer hard disk drives. In this process, fine grain, Nd-magnet-hydride powder is rapidly produced by atomic hydrogen in a 2 M KOH electrolyte. NdFeB magnets are used in wind turbines and hybrid electric vehicles and are instrumental in progression toward a low-carbon economy. Recycling rare-earth elements (REEs) from NdFeB magnet waste is an important step toward building a sustainable REE supply chain. In this study, we describe an electrochemical process to selectively extract REEs from NdFeB magnet waste at room temperature. First ... The nature of hydrogen decrepitation when applied to a cast Nd-Fe-B permanent magnet alloy has been studied by following the microstructural changes on polished surfaces of the material exposed to hydrogen at a pressure of 4 bar. The milling of the material decrepitated at a pressure of 10 bar has also been studied by determining …A combination of hydrogen decrepitation (HD) and jet milling (JM) has been used to produce powder for the processing of permanent magnets. The procedure has proved to be very successful for both Nd-Fe-B (Neomax) alloys and the ND-Dy-Fe-Nb-B high coercivity alloys. The magnets produced by the HD/JM process showed excellent coercivities when …A combination of hydrogen decrepitation (HD) and jet milling (JM) has been used to produce powder for the processing of permanent magnets. The procedure has proved to be very successful for both Nd-Fe-B (Neomax) alloys and the ND-Dy-Fe-Nb-B high coercivity alloys. The magnets produced by the HD/JM process showed excellent coercivities when …The processing and characterisation of recycled NdFeB based magnets. S. Adrwish. Materials Science. 2013. The scrap magnets were turned into a powder using the HD process. The powder was milled for specific times and sintered for 1-3hrs at 1090 °C. The magnet samples were measured using a permeameter to…. Expand. PDF.The subject of this paper is method (4) together with other aspects of the use of hydrogen in the processing of NdFeB-type magnets. 2. The hydrogen decrepitation process The manufacture of rare earth-transition metal magnets by the HD route was first proposed in a 1978 patent by Harris et al. [7].A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Ndfeb hydrogen decrepitation.jpeg

Dec 25, 2017 · Recycling of Nd-Fe-B magnets is one of the few solutions to alleviate the supply risks of certain rare earth elements (REE) such as Nd and Dy. One of the most promising solutions with regards to extraction of end-of-life (EOL) magnets is to apply hydrogen decrepitation and to physically separate the Nd-Fe-B as a demagnetized hydrogenated powder. . Ndfeb hydrogen decrepitation.jpeg

ndfeb hydrogen decrepitation.jpeg

As noted above, the calculated Gibbs energy of reactions of individual REE with atomic hydrogen (Table 1) is strongly negative, thereby predictive of rapid chemical decrepitation of the two-phase Nd-magnet within the temperature range of interest. These reactions can be expected to take place immediately … See moreThe decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …An essential information about history and applications of Hydrogen Decrepitation has been generally reported. Very important technical details about the HD route were summarized, as well as fabrication procedure of Nd16Fe76B8 permanent magnet. Some micro strucural of SEM images of hydride and sintered magnets were given to …An effective and complete processing route for the recycling of sintered Nd-Fe-B scrap magnets was proposed. Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at various temperatures in the range of 50–300 °C, at two different pressures, 50 kPa and 200 kPa, followed by vacuum dehydrogenation in …Jan 1, 2007 · The rapid cooling of the strip flakes suppresses the growth of soft α-Fe branch crystal grains. The thickness of the strip flakes was about 0.25–0.35 mm. Hydrogen decrepitation (HD), which uses the expansion of hydrogen to break up the flakes, was followed by milling in a jet mill (JM). The particles were then accelerated to supersonic ... Rare earth magnets based upon neodymium-iron-boron (NdFeB) are employed in many high tech applications, including h... Skip to main content. Sign In Create account . Journal Article OPEN ACCESS. THE USE OF THERMAL HYDROGEN DECREPITATION TO RECYCLE Nd-Fe-B MAGNETS FROM ELECTRONIC WASTE. Piotrowicz A; Pietrzyk S; …The invention relates to a hydrogen decrepitation process for sintered Nd-Fe-B permanent magnets and belongs to the technical field of magnetic materials. The hydrogen decrepitation process includes melting metal materials, quickly solidifying the metal materials into cast pieces, activating the cast pieces under a certain condition, namely …At these elevated tempera- tures the decrepitation process proceeded rapidly and particles were ejected from the sample on all sides, V.A. Yartys et al. / Journal of Alloys and Compounds 239 (1996) 50-54 53 Fig. 2. Surface of a plate ejected from the [001 ] aligned sintered Nd16FeTaB8 magnet at the first stage of hydrogen decrepitation.T D ACCEPTED MANUSCRIPT The Use of Hydrogen to Separate and Recycle Neodymium-Iron-Boron-type Magnets from Electronic Waste A. Walton a, Han Yi , N.A. Rowson b, J.D. Speight , V.S.J. Mann a, R.S. Sheridan , A. Bradshaw a, I.R. Harris a, A.J. Williams School of Metallurgy and Materials a and School of Chemical Engineering b, …Jul 15, 2015 · The obtained strips were pulverized and further milled into ∼5 μm powder using hydrogen decrepitation and jet milling, respectively. These powders were pressed in a magnetic field of 1.8 T under a pressure of 8.0 MPa. Afterward, the green compacts were sintered at 1070°C for 3 h in vacuum, cooled by Ar quenching. NdFeB ingot exposed to hydrogen atmosphere due to the changes of hydride lattice parameters cracks. The process called HDDR (Hydrogenation - …magnets. The thermal and mechanical impact of the hydrogen decrepitation process was assessed during hydrogen processing. For all forms of sintered NdFeB scrap the surface condition of the magnets is important as oxidation has been shown to inhibit the onset of the hydrogen decrepitation process. In thisSemantic Scholar extracted view of "Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process" by M. Zakotnik et al. ... The purpose of this thesis was to study the Hydrogen Decrepitation (HD) process as a way to recycle waste scraps of Nd-Fe-B sintered magnets into highly coercitive and anisotropic …The basic compound for most Neodymium magnets is Nd2Fe14B. In practice, the actual chemical reaction used can be more complicated. A commonly used reaction is: 57 Fe + 8 B + 10 Fe2O3 + 7.5 Nd2O3 ...The hydrogen decrepitation (HD) process are studied in detail based on these results. The hydrogen absorption mechanism of Sm(CoFeCuZr) 7.6 alloy can be regarded as a hydrogen dissolution process without phase transformation. In addition, the existence of a large amount of fine grains in the SC has an adverse effect on the …Jan 1, 2020 · Hydrogen decrepitation (HD) can be used as a direct reuse approach and effective method of recycling process to turn solid sintered magnets into a demagnetised powder for further processing. room temperature in a custom-made gauge glass reactor, and the hydrogen decrepitation process was video-monitored in situ with a single frame camera at 0.1 frames per second (fps).Sprecher, et al. [8] compared the environmental impact of producing virgin NdFeB magnets to producing recycled NdFeB magnets from waste computer hard disk drives (HDDs) using hydrogen decrepitation. The results showed that recycling in general was more favorable to the environment, and this was especially true for manual …Sep 14, 2000 · This way of powdering known as hydrogen decrepitation (HD) is a well-established stage of manufacturing technologies of sintered [2], [3] and bonded [4] Nd–Fe–B magnets. The interstitial hydrogen in the ferromagnetic Nd 2 Fe 14 B phase reduces significantly its anisotropy field H A. That is why desorption of hydrogen is necessary in order ... The high- and standard-grade material can be processed using either an HD/HDDR process or a sintering process, both of which are being tested in the course of this project. HD/HDDR stands for hydrogen decrepitation (HD) and hydrogen-disproportionation decomposition-recombination (HDDR). The HD/HDDR pulverised …A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable …High performance NdFeB permanent magnets are widely manufactured using the conventional powder metallurgy route involving distinct steps: alloy synthesis by strip casting, pulverization by hydrogen decrepitation and jet milling, shaping by compaction and sintering followed by annealing [32]. Every step of this manufacturing process has …Received 21st February 2020, Accepted 5th March 2020. meric portion. The PA-free magnet powder was found to retain >90% of its original magnetic properties. Two epoxy-bonded magnets produced with this recycled magnet powder showed magnetic properties. DOI: 10.1039/d0gc00647e. 99.5%. The strips were employed in hydrogen decrepitation (HD) into coarse fragile particles. These coarse particles were then sent into jet milling (JM) procedure under a N. 2. gas flow. The dry powder was compacted of 14 mm diameter and 15 mm height with the alignment made with the maximum 2 T magnetic field. The decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …The basic compound for most Neodymium magnets is Nd2Fe14B. In practice, the actual chemical reaction used can be more complicated. A commonly used reaction is: 57 Fe + 8 B + 10 Fe2O3 + 7.5 Nd2O3 ...Oct 1, 2015 · Hydrogen is already used to process cast NdFeB in the Hydrogen Decrepitation (HD) process. The HD process is used extensively to reduce bulk (or strip) cast NdFeB ingots to friable, hydrogenated NdFeB granules/powder, prior to the production of jet milled powder which is then aligned, compressed and sintered to form fully dense sintered magnets ... Rare earth magnets based upon neodymium-iron-boron (NdFeB) are employed in many high tech applications, including h... Skip to main content. Sign In Create account . Journal Article OPEN ACCESS. THE USE OF THERMAL HYDROGEN DECREPITATION TO RECYCLE Nd-Fe-B MAGNETS FROM ELECTRONIC WASTE. Piotrowicz A; Pietrzyk S; …In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the …Oct 30, 2018 · The Hydrogen Decrepitation and the Hydrogen Disproportionation Desorption Recombination processes for the preparation and the recycling of the two industrially produced phases of SmCo alloys, SmCo5 and Sm2Co17, are reviewed. The effects of the chemical composition, the microstructure, the exposure time, the hydrogen pressure, and the temperature on the hydrogen absorption are discussed. The ... In recent years, under the background of global low-carbon development, the production of NdFeB magnets has increased dramatically. With the end of magnet life, a large number of discarded products will be produced in the future. At the same time, 6–73% of industrial waste will be produced in the manufacturing process of magnets. The rare …Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce ...As noted above, the calculated Gibbs energy of reactions of individual REE with atomic hydrogen (Table 1) is strongly negative, thereby predictive of rapid chemical decrepitation of the two-phase Nd-magnet within the temperature range of interest. These reactions can be expected to take place immediately … See moreReceived 21st February 2020, Accepted 5th March 2020. meric portion. The PA-free magnet powder was found to retain >90% of its original magnetic properties. Two epoxy-bonded magnets produced with this recycled magnet powder showed magnetic properties. DOI: 10.1039/d0gc00647e. A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Sep 7, 2022 · We report investigations on the processing by Spark Plasma Sintering (SPS) of RE2Fe14B (RE = Nd, Pr…) powders obtained by hydrogen decrepitation of decommissioned magnets and the magnetic properties of the consolidated magnets. First experiments have been carried out with a commercial powder to make clear the mechanisms occurring during the powder densification. The magnetic properties of ... hydrogen uptake (2043.76 μmol∙g-1) was received for conditions 4 bar and room temperature, while the lowest (925.27 μmol∙g -1 ) for 1 bar at 400 0 C (Figure 4). At room temperature (29The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a …Dec 25, 2017 · Recycling of Nd-Fe-B magnets is one of the few solutions to alleviate the supply risks of certain rare earth elements (REE) such as Nd and Dy. One of the most promising solutions with regards to extraction of end-of-life (EOL) magnets is to apply hydrogen decrepitation and to physically separate the Nd-Fe-B as a demagnetized hydrogenated powder. Electrolytic Hydrogen Decrepitation of NdFeB Magnets Under Ambient Conditions. V. Kaplan, Y. Feldman, …, I. Lubomirsky. Journal of Sustainable Metallurgy • Volume 8, Issue 3 • 1 September 2022. 1 citation; Scopus record. Article. 2D Pb-Halide Perovskites Can Self-Heal Photodamage Better than 3D Ones.The reaction speed in the typical hydrogenation run (Fig. 1b, 1d) is limited only by the rate of the gas diffusion into the sample.When the reaction proceeds in deficiency of hydrogen (Fig. 1b) only a part of the Nd transforms into neodymium hydride NdH y as it follows from the diffraction pattern displayed in Fig. 2d.That pattern includes …The hydrogen treatment of the Nd‐Fe‐B alloy ingots was found to produce magnet powders with good magnetic properties. Typical magnetic properties of these powders are as follows; 4πIs = 9.5 kG, Br = 7.7 kG, iHc = 9.4 kOe, and (BH)max = 12.2 MGOe. Microstructural studies of these powders showed that they are made of fine …The hydrogen decrepitation (HD) behaviors of various forms of the permanent magnet alloy Nd{sub 16}Fe{sub 76}B{sub 8} and stoichiometric composition Nd{sub 11.8}Fe{sub 82.3}B{sub 5.9} have been investigated to provide background information on the production of sintered magnets by the HD process. ... The procedure …The reactions and phase changes occurring during sintering of NdFeB permanent magnet alloys were studied by differential thermal analysis and scanning electron microscopy. The powders were produced by hydrogen decrepitation and on heating, hydrogen evolution occurred in two stages: firstly from the matrix phase (∼170 °C) and …Sep 7, 2022 · We report investigations on the processing by Spark Plasma Sintering (SPS) of RE2Fe14B (RE = Nd, Pr…) powders obtained by hydrogen decrepitation of decommissioned magnets and the magnetic properties of the consolidated magnets. First experiments have been carried out with a commercial powder to make clear the mechanisms occurring during the powder densification. The magnetic properties of ... Hydrogen Decrepitation is a process step used in the production of Neodymium magnets to create extremely small grains in the material. Neodymium magnets must have very small grains averaging about 5 micrometers in order to have the best magnetic properties. But the grain sizes after casting are much larger than that, so they must be ground down ...The scrap sintered Nd–Fe–B magnets were recycled as the raw materials for bonded magnets using the hydrogen decrepitation (HD) process. The HD powders have the lowest oxygen and hydrogen content by hydrogenation at 150 °C with 1 bar H2 pressure and dehydrogenation at 600 °C. The powders with the largest particle size (>380 μm) …The treatment starts with a hydrogen decrepitation (HD) process to transform the as extracted waste magnets into an almost fully demagnetized powder for an easy separation of the magnetic fraction from the rest of the materials (corrosion protection layers or, depending on the device, the assembly where the magnet was fixed into) [6]. …Hydrogen decrepitation (HD) is based on the selective synthesis of neodymium hydrides though the reaction of hydrogen gas with neodymium located in the Nd-Fe-B magnet. HD process was originally designed and patented by Harris et al. (1979) as a way to break down SmCo and Sm 2(Co,Fe,Cu,Zr) alloys. 5 17. The corrosion and degradation of sintered Nd–Fe–B type magnets by hydrogen obtained from moisture in the environment has been termed the Negative Harris Effect. The residual hydrogen from the hydrogen decrepitation process in the manufacture of fully dense magnets is desorbed completely during the vacuum sintering …Jan 1, 2022 · The SC alloy is converted into a fine powder by hydrogen decrepitation and then jet-milling (JM) to produce a fine powder consisting almost entirely of single crystal particles of the Nd 2 Fe 14 B phase. This powder is then filled into fills molds and pressed while a magnetic field is applied to orient the individual particles. The compacted ... Hydrogen absorption/adsorption properties of high coercivity NdDyFeCoNbCuB sintered magnets were determined. Hydrogenation kinetics were analyzed using both differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Hydrogenation of the Nd-rich intergranular phase results in a rather broad and large peak …Mar 1, 2019 · Fig. 1 shows the hydrogen decrepitation curves of Nd-Fe-B SC and SM at 288 K with different initial hydrogen pressure. Under the initial hydrogen pressure of 0.1–1 Mpa, the HD process composes of four stages of magnets surface activation, slow hydrogenation of Nd-rich grain boundary phase, quick hydrogenation of Nd 2 Fe 14 B main phase grains, and slow hydrogenation of inner part of the magnets. A combination of hydrogen decrepitation (HD) and jet milling (JM) has been used to produce powder for the processing of permanent magnets. ... The procedure has proved to be very successful for both NdFeB (Neomax) alloys and the NdDyFeNbB high coercivity alloys. The magnets produced by the HD/JM process showed excellent …(DOI: 10.1016/S0925-8388(99)00443-0) The corrosion and degradation of Nd–Fe–B magnets by hydrogen from moisture in the environment has been termed the Negative Harris Effect. In order to provide more information on this phenomenon, different density Nd–Fe–B magnets have been subjected to vacuum desorption, XRD and …Hydrogen decrepitation (HD) is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB) magnets. During the HD process, the NdFeB breaks down into a matrix phase (Nd2Fe14BHx) and RE-rich grain boundary phase. The grain boundary phase in the HD powder is <2 μm in size. Recycled NdFeB material has …May 1, 2023 · The hydrogen absorbed by the whole alloy and, in particular, by the Nd 2 Fe 14 B phase decreases with temperature. Below 150 °C, the hydrogen absorbed by the Nd 2 Fe 14 B phase produces a significant transgranular cracking that is undesirable for particle shape. At 300 °C, the fast and limited absorption of hydrogen by the Nd-rich phase ... T D ACCEPTED MANUSCRIPT The Use of Hydrogen to Separate and Recycle Neodymium-Iron-Boron-type Magnets from Electronic Waste A. Walton a, Han Yi , N.A. Rowson b, J.D. Speight , V.S.J. Mann a, R.S. Sheridan , A. Bradshaw a, I.R. Harris a, A.J. Williams School of Metallurgy and Materials a and School of Chemical Engineering b, …Nov 1, 2017 · Fig. 1. Illustration of the Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling of anisotropic sintered NdFeB magnet. Passivated commercial N48M sintered magnets were used as starting material and hydrogen was applied to disintegrate the magnets inside a ball milling container. The hydride powder was both used directly and some powder ... Oct 1, 2020 · INET-3 is efficient to recover and separate Dy, Nd, and Co from NdFeB leachates. Its ΔpH 0.5 values of Fe-Dy, Dy-Nd, and Nd-Co are 0.35, 0.79, and 2.49, respectively. It is better to remove Fe 3+ by selective leaching and precipitation before Dy, Nd, and Co recovery and separation. 98% of Dy 3+ is recovered after four-stage counter-current extraction at A/O = 1:2 and equilibrium pH = 2.52. The decrepitation process and related changes in the sample temperature are analysed to explain the experimentally observed weight gain curve of a Nd–Fe–B sample due to hydrogen uptake. It is shown that the expansion of the specific surface resulting from decrepitation of the sample is the most important parameter controlling …Abstract. Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density …Apr 15, 2022 · An effective and complete processing route for the recycling of sintered Nd-Fe-B scrap magnets was proposed. Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at various temperatures in the range of 50–300 °C, at two different pressures, 50 kPa and 200 kPa, followed by vacuum dehydrogenation in the range of 720–820 °C. . Rodenberger gray funeral home obituaries